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Abstract

The hp version of the finite element method (hp-FEM) combined with
adaptive mesh refinement is a particularly efficient method for solving
partial differential equations because it can achieve a convergence rate
that is exponential in the number of degrees of freedom. hp-FEM allows
for refinement in both the element size, h, and the polynomial degree, p.
Like adaptive refinement for the h version of the finite element method, a
posteriori error estimates can be used to determine where the mesh needs
to be refined, but a single error estimate can not simultaneously determine
whether it is better to do the refinement by h or by p. Several strategies
for making this determination have been proposed over the years. In this
paper we summarize these strategies and demonstrate the exponential
convergence rates with two classic test problems.

Keywords: elliptic partial differential equations, finite elements, hp-adaptive
strategy, hp-FEM

1 Introduction

The numerical solution of partial differential equations (PDEs) is the most
compute-intensive part of a wide range of scientific and engineering applica-
tions. Consequently the development and application of faster and more accu-
rate methods for solving partial differential equations has received much atten-
tion in the past fifty years. Self-adaptive methods to determine a quasi-optimal
grid are a critical component of the improvements, and have been studied for
nearly 30 years now. They are often cast in the context of finite element meth-
ods, where the domain of the PDE is partitioned into a mesh consisting of a
number of elements (in two dimensions, usually triangles or rectangles), and the
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approximate solution is a polynomial over each element. Most of the work has
focused on h-adaptive methods. In these methods, the mesh size, h, is adapted
locally by means of a local error estimator with the goal of placing the smallest
elements in the areas where they will do the most good. In particular, elements
that have a large error estimate get refined so that ultimately the error estimates
are approximately equal over all elements.

Recently, the research community has begun to focus more attention on hp-
adaptive methods. In these methods, one not only locally adapts the size of the
mesh, but also the degree of the polynomials, p. The attraction of hp-adaptivity
is that the error converges at an exponential rate in the number of degrees of
freedom, as opposed to a polynomial rate for fixed p. Much of the theoretical
work showing the advantages of hp-adaptive methods was done in the 1980’s,
but it wasn’t until the 1990’s that practical implementation began to be studied.
The new complication is that the local error estimator is no longer sufficient to
guide the adaptivity. It indicates which elements should be refined, but it does
not indicate whether it is better to refine the element by h or by p. A method
for making that determination is called an hp-adaptive strategy. A number of
strategies have been proposed. In this paper we summarize 15 such hp-adaptive
strategies.

The remainder of the paper is organized as follows. In Section 2 we define
the equation to be solved, present the finite element method, and give some
a priori error estimates. In Section 3 we give the details of an hp-adaptive
finite element algorithm. Section 4 defines the hp-adaptive strategies. Section
5 contains numerical results to demonstrate the convergence achieved by the
different strategies. Finally, we draw our conclusions in Section 6.

2 The Finite Element Method

For simplicity, consider the Poisson boundary value problem

−∂2u

∂x2
− ∂2u

∂y2
= f(x, y) in Ω (1)

u = g(x, y) on ∂Ω (2)

where Ω is a bounded, connected, open region in R2. Note, however, that
everything in this paper applies equally well to a general second order elliptic
PDE with mixed boundary conditions. The data in Equations 1-2 are assumed
to satisfy the usual ellipticity and regularity assumptions.

Denote by L2(Ω) the space of square integrable functions over Ω with inner
product

〈u, v〉2 =
∫∫
Ω

uv

and norm
||v||22 = 〈v, v〉2.
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Hm(Ω) denotes the usual Sobolev spaces of functions whose derivatives up to
order m are in L2(Ω). The Sobolev spaces have inner products

〈u, v〉Hm(Ω) =
∫∫
Ω

∑
|α|≤m

DαuDαv

and norms
||v||2Hm(Ω) = 〈v, v〉Hm(Ω)

where

Dαv =
∂|α|v

∂α1x∂α2y
, α = (α1, α2), αi ∈ N, |α| = α1 + α2.

Let Hm
0 (Ω) = {v ∈ Hm(Ω) : v = 0 on ∂Ω}. Let ũD be a lift function

satisfying the Dirichlet boundary conditions in Equation 2 and define the affine
space ũD + H1

0 (Ω) = {ũD + v : v ∈ H1
0 (Ω)}. Define the bilinear form

B(u, v) =
∫∫
Ω

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

and the linear form
L(v) =

∫∫
Ω

fv

Then the variational form of the problem is to find the unique u ∈ ũD + H1
0 (Ω)

that satisfies
B(u, v) = L(v) ∀v ∈ H1

0 (Ω).

The energy norm of v ∈ H1
0 is defined by ||v||2E(Ω) = B(v, v).

The finite element space is defined by partitioning Ω into a grid (or mesh),
Ghp, consisting of a set of NT triangular elements, {Ti}NT

i=1 with Ω̄ = ∪NT
i=1T̄i. If

a vertex of a triangle is contained in the interior of an edge of another triangle,
it is called a hanging node. We only consider compatible grids with no hanging
nodes, i.e. T̄i ∩ T̄j , i 6= j, is either empty, a common edge, or a common vertex.
The diameter of the element is denoted hi. With each element we associate an
integer degree pi ≥ 1. The finite element space Vhp is the space of continuous
piecewise polynomial functions on Ω such that over element Ti it is a polynomial
of degree pi. The degree of an edge is determined by applying the minimum rule,
i.e. the edge is assigned the minimum of the degrees of the adjacent elements.

The finite element solution is the unique function uhp ∈ ũD + Vhp that
satisfies

B(uhp, vhp) = L(vhp) ∀vhp ∈ Vhp.

The error is defined by ehp = u− uhp.
The finite element solution is expressed as a linear combination of basis

functions {φi}
Ndof

i=1 that span ũD + Vhp,

uhp(x, y) =
Ndof∑
i=1

αiφi(x, y)
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begin with a very coarse grid in h with small p
form and solve the linear system
repeat

determine which elements to coarsen and whether to coarsen by h or p
coarsen elements
determine which elements to refine and whether to refine by h or p
refine elements
form and solve the linear system

until some termination criterion is met

Figure 1: Basic form of an hp-adaptive algorithm.

Ndof is the number of degrees of freedom in the solution. The p-hierarchical
basis of Szabo and Babuška [31], which is based on Legendre polynomials, is
used in the program used for most of the results in Section 5. The basis functions
are hierarchical in the sense that the basis functions for a space of degree p are a
subset of the basis functions for a space of degree p+1. For an element of degree
pi with edge degrees pi,j , j = 1, 2, 3 there is one linear basis function associated
with each vertex, pi,j − 1 basis functions, of degree 2, 3 . . . pi,j , associated with
edge j, and q − 2 basis functions of degree q for q = 3, 4 . . . pi (for a total of
(pi − 1)(pi − 2)/2) whose support is the interior of the triangle.

The discrete form of the problem is a linear system of algebraic equations

Ax = b (3)

where the matrix A is given by Aij = B(φi, φj) and the right hand side is given
by bi = L(φi). The solution x consists of the αi’s.

If h and p are uniform over the grid, u ∈ Hm(Ω), and the other usual
assumptions are met, then the a priori error bound is [6, 7]

||ehp||H1(Ω) ≤ C
hµ

pm−1
||u||Hm(Ω) (4)

where µ = min(p, m− 1) and C is a constant that is independent of h, p and u,
but depends on m.

With a suitably chosen hp mesh, and other typical assumptions, the error
can be shown [13] to converge exponentially in the number of degrees of freedom,

||ehp||H1(Ω) ≤ C1e
−C2N

1/3
dof (5)

for some C1, C2 > 0 independent of Ndof .

3 hp-Adaptive Refinement Algorithm

One basic form of an hp-adaptive algorithm is given in Figure 1. There are
a number of approaches to each of the steps of the algorithm. In this paper, the
following approaches are used.
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Triangles are h-refined by the newest node bisection method [18]. Briefly, a
parent triangle is h-refined by connecting one of the vertices to the midpoint of
the opposite side to form two new child triangles. The most recently created
vertex is chosen as the vertex to use in this bisection. Triangles are always
refined in pairs (except when the edge to be refined is on the boundary) to
maintain compatibility of the grid. This may require first refining a neighbor
triangle to create the second triangle of the pair. The h-refinement level, li, of
a triangle Ti is one more than the h-refinement level of the parent, with level 1
assigned to the triangles of the initial coarse grid. p-refinement is performed by
increasing the degree of the element by one, followed by enforcing the minimum
rule for the edges. Coarsening of elements means reversing the refinement.

Adaptive refinement is guided by a local a posteriori error indicator com-
puted for each element. There are several choices of error indicators; see for
example [2, 32]. For this paper, the error indicator for element Ti is given by
solving a local Neumann residual problem:

−∂2ei

∂x2
− ∂2ei

∂y2
= f − ∂2uhp

∂x2
− ∂2uhp

∂y2
in Ti (6)

ei = 0 on ∂Ti ∩ ∂Ω (7)

∂ei

∂n
= −1

2

[
∂uhp

∂n

]
on ∂Ti \ ∂Ω (8)

where ∂
∂n is the unit outward normal derivative and

[
∂uhp

∂n

]
is the jump in the

outward normal derivative of uhp across the element boundary. The approximate
solution, ei,hp of Equations 6-8 is computed using the hierarchical bases of exact
degree pi + 1, where pi is the degree of Ti. The error indicator for element Ti is
then given by

ηi = ||ei,hp||E(Ti)

A global energy norm error estimate is given by

η =

(
NT∑
i=1

η2
i

)1/2

.

The criterion for program termination is that the relative error estimate
be smaller than a prescribed error tolerance τ , i.e. η/||uhp||E(Ω) < τ . El-
ements are selected for coarsening if ηi < maxi ηi/100 and for refinement if
ηi > τ ||uhp||E(Ω)/

√
NT . Note that if every element had ηi = τ ||uhp||E(Ω)/

√
NT

then η/||uhp||E(Ω) = τ , hence the
√

NT factor.

4 The hp-Adaptive Strategies

In this section, the hp-adaptive strategies that have been proposed in the lit-
erature are presented. In some cases, these strategies were developed in the
context of 1D problems, rectangular elements, or other settings that are not
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fully compatible with the context of this paper. In those cases, the strategy
is appropriately modified for 2D elliptic PDEs and newest node bisection of
triangles.

4.1 Use of a priori Knowledge of Solution Regularity

It is well known that for smooth solutions p-refinement will produce an exponen-
tial rate of convergence, but near singularities p-refinement is less effective than
h-refinement. This is a consequence of the a priori error bounds in Equations 4
and 5. For this reason, many of the hp strategies use h-refinement in areas where
the solution is irregular (i.e., locally fails to be in Hm for some finite m, also
called nonsmooth) or nearly irregular, and p-refinement elsewhere. The simplest
strategy is to use any a priori knowledge about irregularities. For example, it
is known that linear elliptic PDEs with smooth coefficients and piecewise an-
alytic boundary data will have point singularities only near reentrant corners
of the boundary and where boundary conditions change [4]. Another example
would be a situation where one knows the approximate location of a shock in
the interior of the domain.

An hp-adaptive strategy of this type was presented by Ainsworth and Senior
[4]. In this approach they simply flag vertices in the initial mesh as being possible
trouble spots. During refinement an element is refined by h if it contains a vertex
that is so flagged, and by p otherwise. We will refer to this strategy by the name
APRIORI.

We extend this strategy to allow more general regions of irregularity, and
to provide the strength of the irregularity. The user provides a function that,
given an element Ti as input, returns a regularity value for that element. For
true singularities, it would ideally return the maximum value of m such that
u ∈ Hm(Ti). But it can also indicate that a triangle intersects an area that
is considered to be nearly irregular, like a boundary layer or sharp wave front.
Based on the definition of µ in Equation 4, if the current degree of the triangle
is pi and the returned regularity value is mi, we do p-refinement if pi ≤ mi − 1
and h-refinement otherwise. The same approach is used in all the strategies
that estimate the local regularity mi.

4.2 Estimate Regularity Using Smaller p Estimates

Süli, Houston and Schwab [30] presented a strategy based on Equation 4 and
an estimate of the convergence rate in p using error estimates based on pi − 2
and pi − 1. We will refer to this strategy as PRIOR2P. This requires pi ≥ 3, so
we always use p-refinement in elements of degree 1 and 2.

Suppose the error estimate in Equation 4 holds on individual elements and
that the inequality is an approximate equality. Let ηi,pi−2 and ηi,pi−1 be a
posteriori error estimates for partial approximate solutions over triangle Ti using
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the bases up to degree pi − 2 and pi − 1, respectively. Then

ηi,pi−1

ηi,pi−2
≈
(

pi − 1
pi − 2

)−(mi−1)

and thus the regularity is estimated by

mi ≈ 1− log(ηi,pi−1/ηi,pi−2)
log((pi − 1)/(pi − 2))

Use p-refinement if pi ≤ mi − 1 and h-refinement otherwise.
Thanks to the p-hierarchical basis, the computation of the error estimates is

very inexpensive. For 1 ≤ j < pi,

uhp|Ti
=

∑
supp(φk)∩Ti 6=∅

αkφk =
∑

supp(φk)∩Ti 6=∅
deg(φk)≤pi−j

αkφk +
∑

supp(φk)∩Ti 6=∅
deg(φk)>pi−j

αkφk

where supp(φk) is the support of φk and deg(φk) is the degree of φk. The
last sum is the amount by which the solution changed when the degree of the
element was increased from pi− j to pi, and provides an estimate of the error in
the partial approximate solution of degree pi − j given in the next to last sum.
(Indeed, the local Neumann error estimator of Equations 6-8 approximates this
quantity for the increase from degree pi to pi+1.) Thus the error estimates are

ηi,pi−j = ||
∑

supp(φk)∩Ti 6=∅
deg(φk)>pi−j

αkφk||H1(Ti)

which only involves computing the norm of known quantities.

4.3 Type parameter

Gui and Babuška [12] presented an hp-adaptive strategy using what they call
a type parameter, γ. This strategy is also used by Adjerid, Aiffa and Flaherty
[1]. We will refer to this strategy as TYPEPARAM.

Given the error estimates ηi,pi and ηi,pi−1, define

R(Ti) =

{
ηi,pi

ηi,pi−1
ηi,pi−1 6= 0

0 ηi,pi−1 = 0

By convention, ηi,0 = 0, which forces p-refinement if pi = 1.
R is used to assess the perceived solution smoothness. Given the type pa-

rameter, 0 ≤ γ < ∞, element Ti is h-refined if R(Ti) > γ, and p-refined if
R(Ti) ≤ γ. Note that γ = 0 gives pure h-refinement and γ = ∞ gives pure
p-refinement.

For the error estimates, we use the local Neumann error estimate of Equa-
tions 6-8 for ηi,pi , and the ηi,pi−1 of Section 4.2. We use γ = 0.3 in the results
of Section 5.
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4.4 Estimate Regularity Using Larger p Estimates

Another approach that estimates the regularity is given by Ainsworth and Senior
[3]. This strategy uses three error estimates based on spaces of degree pi + 1,
pi + 2 and pi + 3, so we refer to it as NEXT3P.

The error estimate used to approximate the regularity is a variation on the
local Neumann residual error estimate given by Equations 6-8 in which Equation
8 is replaced by

∂ei

∂n
= gi on ∂Ti \ ∂Ω

where gi is an approximation of ∂u
∂n that satisfies an equilibrium condition. This

is the equilibrated residual error estimator in [2].
The local problem is solved on element Ti three times using the spaces of

degree pi + q, q = 1, 2, 3, to obtain error estimates ei,q. In contrast to the
local Neumann residual error estimate, the whole space over Ti is used, not just
the p-hierarchical bases of degree greater than pi. These approximations to the
error converge to the true solution of the residual problem at the same rate the
approximate solution converges to the true solution of Equations 1-2, i.e.

||ei − ei,q||E(Ti) ≈ C(pi + q)−α

where C and α are positive constants that are independent of q but depend on
Ti. Using the Galerkin orthogonality

||ei||2E(Ti)
= ||ei − ei,q||2E(Ti)

+ ||ei,q||2E(Ti)

this can be rewritten

||ei||2E(Ti)
− ||ei,q||2E(Ti)

≈ C2(pi + q)−2α.

We can compute ||ei,q||2E(Ti)
and pi + q for q = 1, 2, 3 from the approximate

solutions, so the three constants ||ei||E(Ti), C and α can be approximated by
fitting the data. Then, using the a priori error estimate in Equation 4, the
approximation of the local regularity is mi = 1 + α. Use p-refinement if pi ≤
mi − 1 and h-refinement otherwise.

4.5 Texas 3 Step

The Texas 3 Step strategy [8, 20, 21] first performs h-refinement to get an
intermediate grid, and follows that with p-refinement to reduce the error to
some given error tolerance, τ . We will refer to this strategy as T3S. Note that
for this strategy the basic form of the hp-adaptive algorithm is different than
that in Figure 1.

The first step is to create an initial mesh with uniform p and nearly uniform
h such that the solution is in the asymptotic range of convergence in h. This may
be accomplished by performing uniform h-refinements of some very coarse initial
mesh until the asymptotic range is reached. The resulting grid has N0 elements
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with sizes hi, degrees pi and a posteriori error estimates ηi, and approximate
solution u0. The results in Section 5 begin with p = 1 and assume the initial
grid is sufficiently fine in h.

The second step is to perform adaptive h-refinement to reach an intermediate
error tolerance γτ where γ is a given parameter. In the references, γ is in the
range 5−10, usually 6 in the numerical results. This intermediate grid is created
by computing a desired number of children for each element Ti by the formula

ni =

[
Λ2

i NIh
2µi

i

p
2(mi−1)
i η2

I

] 1
βµi+1

(9)

where NI =
∑

ni is the number of elements in the intermediate grid, mi is the
local regularity of the solution, µi = min(pi,mi − 1), ηI = γτ ||u0||E(Ω), β = 1
for 2D problems, η2

0 =
∑

η2
i and

Λi =
ηiΛ
η0

where

Λ =
η0p

mi−1
i

hµi

i

See any of the above references for the derivation of this formula. It is based on
the a priori error estimate in Equation 4. Inserting the expression for Λi into
Equation 9 and using β = 1 we arrive at

ni =
[
η2

i NI

η2
I

] 1
µi+1

NI is not known at this point, since it is the sum of the ni. Successive iter-
ations are used to solve for ni and NI simultaneously. We use 5 iterations,
which preliminary experiments showed to be sufficient (convergence was usually
achieved in 3 or 4 iterations). Once the ni have been determined, we perform
b0.5+log2 nic uniform h-refinements (bisections) of each element Ti to generate
approximately ni children, and solve the discrete problem on the intermediate
grid.

The third step is to perform adaptive p-refinement to reduce the error to the
desired tolerance τ . The new degree for each element is given by

p̂i = pi

[
ηI,i

√
NI

ηT

] 1
mi−1

where ηI,i is the a posteriori error estimate for element Ti of the intermediate
grid and ηT = τ ||u0||E(Ω). Again, the formula is a simple reduction of the
equations derived in the references. p-refinement is performed to increase the
degree of each element Ti to p̂i, and the discrete problem is solved on the final
grid.
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In the results of Section 5, if ni < 2 or p̂i < pi then refinement is not
performed. Also, to avoid excessive refinement, the number of h-refinements
done to any element in Step 2 and number of p-refinements in Step 3 is limited
to 3.

The strategy of performing all the h-refinement in one step and all the p-
refinement in one step is adequate for low accuracy solutions (e.g. 1%), but is
not likely to work well with high accuracy solution (e.g. 10−8 relative error) [22].
We extend the Texas 3 Step strategy to high accuracy by cycling through Steps
2 and 3 until the final tolerance τfinal is met. τ in the algorithm above is now
the factor by which one cycle of Steps 2 and 3 should reduce the error. Toward
this end, before Step 2 the error estimate η0 is computed for the current grid.
The final (for this cycle) and intermediate targets are now given by ηT = τη0

and ηI = γηT . In the results of Section 5 we use τ = 0.1 and γ = 6. For the
local regularity mi we use the same routine as the APRIORI strategy (Section
4.1).

4.6 Alternate h and p

This strategy, which will be referred to as ALTERNATE, is a variation on T3S
that is more like the algorithm of Figure 1. The difference is that instead of
predicting the number of refinements needed to reduce the error to the next
target, the usual adaptive refinement is performed until the target is reached.
Thus in Step 2 all elements with an error indicator larger than ηI/

√
N0 are

h-refined. The discrete problem is solved and the new error estimate compared
to ηI . This is repeated until the error estimate is smaller than ηI . Step 3 is
similar except adaptive p-refinement is performed and the target is ηT . Steps 2
and 3 are repeated until the final error tolerance is achieved.

4.7 Nonlinear Programming

Patra and Gupta [23] proposed a strategy for hp mesh design using nonlinear
programming. We refer to this strategy as NLP. They presented it in the context
of quadrilaterals with one level of hanging nodes, i.e., an element edge is allowed
to have at most one hanging node. Here it is modified slightly for newest node
bisection of triangles with no hanging nodes. This is another approach that
does not strictly follow the algorithm in Figure 1.

Given a current grid with triangles {Ti}, degrees {pi}, h-refinement levels
{li}, error estimates {ηi}, and element diameters

hi =
(

1√
2

)li

H0,i

where H0,i is the diameter of the element in the initial grid that contains Ti,
the object is to determine new mesh parameters {p̂i} and {l̂i}, i = 1..NT , by
solving an optimization problem. The new grid is obtained by refining Ti l̂i − li
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times (or coarsening if l̂i < li) and assigning degree p̂i to the 2l̂i−li children.
The size of the children of Ti is

ĥi =
(

1√
2

)l̂i

H0,i.

There are two forms of the optimization problem, which can be informally
stated as 1) minimize the number of degrees of freedom (or some other measure
of grid size) subject to the error being less than a given tolerance and other
constraints, and 2) minimize the error subject to the number of degrees of free-
dom being less than a given limit and other constraints. We will only consider
the first form here; the second form simply reverses the objective function and
constraint.

Computationally, the square of the error is approximated by
∑NT

i=0 η̂2
i where

η̂i, to be defined later, is an estimate of the error in the refined grid over the
region covered by Ti. The number of degrees of freedom associated with a
triangle of degree p is taken to be 3/6 (one for each vertex with an average of
six triangles sharing a vertex) plus 3(p − 1)/2 (p − 1 for each edge with two
triangles sharing an edge) plus (p− 1)(p− 2)/2 (for the interior), which is p2/2.
Thus the number of degrees of freedom over the children of Ti is 2l̂i−li p̂2

i /2. We
can now formally state the optimization problem as

minimize
{l̂i}, {p̂i}

NT∑
i=1

2l̂i−li
p̂2

i

2
(10)

s.t.
NT∑
i=1

η̂2
i ≤ τ̂2 (11)

l̂j − 1 ≤ l̂i ≤ l̂j + 1 ∀j such that Tj shares an edge with Ti (12)

1 ≤ l̂i ≤ lmax (13)
1 ≤ p̂i ≤ pmax (14)

li − δldec ≤ l̂i ≤ li + δlinc (15)
pi − δpdec ≤ p̂i ≤ pi + δpinc (16)

where τ̂ is the error tolerance for this refinement phase. We use τ̂ = η/4 where
η is the global error estimate on the current grid. The divisor 4 is arbitrary
and could be replaced by some other value. In practice, Equation 11 is divided
through by τ2 so that the numbers are O(1). Equation 12 is a necessary condi-
tion for compatibility of the grid (in [23] it enforces one level of hanging nodes).
It is not a sufficient condition, however any violations of compatibility while this
condition is met are cases where only one triangle of a compatibly divisible pair
was refined, and it is a slight adjustment to the optimal solution to also refine
the other one to maintain compatibility. Equation 13 insures that coarsening
does not go beyond the initial grid, and that the refinement level of an element
does not exceed a prescribed limit lmax. Similarly, Equation 14 insures that
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element degrees do not go below one or exceed a prescribed limit pmax. Also,
because many quantities are only approximate, it is wise to limit the amount of
change that occurs to any element during one phase of refinement. Equations 15
and 16 restrict the amount of decrease in l and p to prescribed limits δldec and
δpdec, and the amount of increase to δlinc and δpinc. In the results in Section 5
we used δldec = δpdec = 1, δlinc = 5, and δpinc = 2.

Since the l̂i and p̂i are naturally integers, the optimization problem is a mixed
integer nonlinear program, which is known to be NP-hard. To make the problem
tractable, the integer requirement is dropped to give a nonlinear program which
can be solved by one of several software packages. For the results in Section 5,
we used the program ALGENCAN 1 Version 2.2.1 [5, 9]. Following solution of
the nonlinear program, the l̂i and p̂i are rounded to the nearest integer.

It remains to define η̂i, the estimate of the error in the refined grid over
the region covered by Ti. Assuming approximate equality in the a priori error
estimate of Equation 4, we have

ηi ≈ C
hµi

i

pmi−1
i

||u||Hm(Ti)

and

η̂i ≈ C
ĥµi

i

p̂mi−1
i

||u||Hm(Ti)

where mi is the local regularity over Ti and µi = min(pi,mi − 1). Combining
these leads to

η̂i ≈
ĥµi

i

p̂mi−1
i

pmi−1
i

hµi

i

ηi =
(

1√
2

)µi(l̂i−li)(pi

p̂i

)mi−1

ηi

and thus the constraint in Equation 11 is

NT∑
i=1

(
1
2

)min(pi,mi−1)(l̂i−li)(pi

p̂i

)2(mi−1)

η2
i < τ̂2

in which the only remaining quantity to be determined is mi. Patra and Gupta
suggest estimating mi by using the observed convergence rate from two grids,
with a formula very similar to that used in the PRIOR2P strategy of Section 4.2.
However, this requires that pi be at least three in every element, so instead we
use the estimate of mi from the NEXT3P strategy of Section 4.4 which allows
pi = 1.

1The mention of specific products, trademarks, or brand names is for purposes of identifica-
tion only. Such mention is not to be interpreted in any way as an endorsement or certification
of such products or brands by the National Institute of Standards and Technology. All trade-
marks mentioned herein belong to their respective owners.
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4.8 Another Optimization Strategy

Another strategy based on the formulation and solution of an optimization prob-
lem is given in Novotny et al. [19]. However, it turns out that 1) the optimiza-
tion does not work near singularities, so a priori knowledge of singularities must
be used to force h-refinement near singularities, and 2) for the finite element
method and class of problems considered in this paper, the strategy always
chooses p-refinement except for extremely large elements. Thus, this strategy is
(nearly) identical to the APRIORI strategy, and will not be considered further
in this paper.

4.9 Predict Error Estimate on Assumption of Smoothness

Melenk and Wohlmuth [16] proposed a strategy based on a prediction of what
the error should be if the solution is smooth. We call this strategy SMOOTH PRED.

When refining element Ti, assume the solution is locally smooth and that
the optimal convergence rate is obtained. If h-refinement is performed and the
degree of Ti is pi, then the expected error on the two children of Ti is reduced
by a factor of

√
2

pi as indicated by the a priori error estimate of Equation 4.
Thus if ηi is the error estimate for Ti, predict the error estimate of the children
to be γhηi/

√
2

pi where γh is a user specified parameter. If p-refinement is
performed on Ti, exponential convergence is expected, so the error should be
reduced by some constant factor γp ∈ (0, 1), i.e., the predicted error estimate is
γpηi. When the actual error estimate of a child becomes available, it is compared
to the predicted error estimate. If the error estimate is less than or equal to the
predicted error estimate, then p-refinement is indicated for the child. Otherwise,
h-refinement is indicated since presumably the assumption of smoothness was
wrong. For the results in Section 5 we use γh = 4 and γp =

√
0.4.

4.10 Larger of h-Based and p-Based Error Indicators

In 1D, Schmidt and Siebert [25] proposed a strategy that uses two a posteriori
error estimates to predict whether h-refinement or p-refinement will reduce the
error more. We extend this strategy to bisected triangles and refer to it as
H&P ERREST.

The local Neumann residual error estimate given by Equations 6-8 is actually
an estimate of how much the error will be reduced if Ti is p-refined. This is
because the solution of the local problem is estimated using the p-hierarchical
bases that would be added if Ti is p-refined, so it is an estimate of the actual
change that would occur. Using the fact that the current space is a subspace of
the refined space and Galerkin orthogonality, it can be shown that

||u− ûhp||2 = ||u− uhp||2 − ||ûhp − uhp||2

where ûhp is the solution in the refined space. Thus the change in the solution
indicates how much the error will be reduced.
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A second error estimate for Ti can be computed by solving a local Dirichlet
residual problem

−∂2ei

∂x2
− ∂2ei

∂y2
= f − ∂2uhp

∂x2
− ∂2uhp

∂y2
in Ti ∪ Tmate

i (17)

ei = g − uhp on ∂(Ti ∪ Tmate
i ) ∩ ∂Ω (18)

ei = 0 on ∂(Ti ∪ Tmate
i ) \ ∂Ω (19)

where Tmate
i is the element that is refined along with Ti in the newest node

bisection method [18]. The solution to this problem is approximated by an h-
refinement of the two elements using only the new basis functions. The error
estimate obtained by taking the norm of this approximate solution is actually
an estimate of how much the solution will change, or the error will be reduced,
if h-refinement is performed.

The two error estimates can be divided by the associated increase in the
number of degrees of freedom to obtain an approximate error reduction per
degree of freedom, and/or be multiplied by a user specified constant to bias the
refinement toward h- or p-refinement. In the results of Section 5 the p-based
error estimate is multiplied by 2, which seemed to work best on the largest
number of test problems.

The type of refinement that is used is the one that corresponds to the larger
of the two modified error estimates.

4.11 Legendre coefficient strategies

There are three hp-adaptive strategies that are based on the coefficients in an
expansion of the solution in Legendre polynomials. In 1D, the approximate
solution in element Ti with degree pi can be written

ui(x) =
pi∑

j=0

ajPj(x)

where Pj is the jth degree Legendre polynomial scaled to the interval of element
Ti.

Mavriplis [15] estimates the decay rate of the coefficients by a least squares
fit of the the last four coefficients aj to Ce−σj . Elements are refined by p-
refinement where σ > 1 and by h-refinement where σ ≤ 1. We refer to this
strategy as COEF DECAY. When four coefficients are not available, we fit to
whatever is available. If only one coefficient is available, we use p-refinement.

Houston et al. [14] present the other two approaches which use the Legendre
coefficients to estimate the regularity of the solution. One approach estimates
the regularity using the root test yielding

mi =
log
(

2pi+1
2a2

pi

)
2 log pi

.
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If pi = 1, use p-refinement. Otherwise, use p-refinement if pi ≤ mi − 1 and
h-refinement if pi > mi − 1. We refer to this strategy as COEF ROOT.

They also present a second way of estimating the regularity from the Leg-
endre coefficients using the ratio test. However, they determined the ratio test
is inferior to the root test, so it will not be considered further in this paper.

Both Mavriplis and Houston et al. presented the strategies in the context
of one dimension and used the Legendre polynomials as the local basis so the
coefficients are readily available. In [14] it is extended to 2D for rectangular
elements with a tensor product of Legendre polynomials, and the regularity
is estimated in each dimension separately, so the coefficients are still readily
available. In this paper we are using triangular elements which have a basis that
is based on Legendre polynomials [31]. In this basis there are 3 + max(j − 2, 0)
basis functions of exact degree j over an element, so we don’t have a single
Legendre polynomial coefficient to use. Instead, for the coefficients aj we use
the `1 norm of the coefficients of the degree j basis functions, i.e.

aj =
∑

k s.t. deg(φk)=j
supp(φk)∩Ti 6=∅

|αk|

4.12 Reference Solution Strategies

Demkowicz and his collaborators developed an hp-adaptive strategy over a num-
ber of years, presented in several papers and books, e.g. [10, 11, 24, 29]. In its
full glory, the method is quite complicated. Here we present only the basic
ideas of the algorithm and how we have adapted it for bisected triangles (it is
usually presented in the context of rectangular elements with some reference to
quadrisected triangles), and refer to the references for further details. We refer
to this strategy as REFSOLN EDGE because it relies on computing a reference
solution and bases the refinement decisions on edge refinements. Note that for
this strategy the basic form of the hp-adaptive algorithm is different than that
in Figure 1.

The algorithm is first presented for 1D elliptic problems. Given the current
existing (coarse) mesh, Gh,p := Ghp, and current solution, uh,p := uhp, a uni-
form refinement in both h and p is performed to obtain a fine mesh Gh/2,p+1.
The equation is solved on the fine mesh to obtain a reference solution uh/2,p+1.
The norm of the difference between the current solution and reference solution
is used as the global error estimate, i.e.,

η = ||uh/2,p+1 − uh,p||H1(Ω)

The next step is to determine the optimal refinement of each element. This
is done by considering a p-refinement and all possible (bisection) h-refinements
that give the same increase in the number of degrees of freedom as the p-
refinement. In 1D, this means that the sum of the degrees of the two children
must be p + 1, resulting in a total of p h-refinements and one p-refinement to
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be examined. For each possibility, the error decrease rate is computed as

|uh/2,p+1 −Πhp,iuh/2,p+1|2H1(Ti)
− |uh/2,p+1 −Πnew,iuh/2,p+1|2H1(Ti)

Nnew −Nhp

where Πhp,iuh/2,p+1 is the projection-based interpolant of the reference solution
in element Ti, computed by solving a local Dirichlet problem, and likewise Πnew,i

is the projection onto the resulting elements from any one of the candidate
refinements. | · |H1(Ti) is the H1 seminorm over Ti. The refinement with the
largest error decrease rate is selected as the optimal refinement. In the case
of h-refinement, the degrees may be increased further by a process known as
following the biggest subelement error refinement path, which is also used to
determine the guaranteed element rate; see [10] for details.

Elements that have a guaranteed rate larger than 1/3 the maximum guar-
anteed rate are selected for refinement, although the factor 1/3 is somewhat
arbitrary.

The 2D algorithm also begins by computing a reference solution on the
globally hp-refined grid Gh/2,p+1. (For bisected triangles, we should use the
subscript h/

√
2, p + 1 for the fine grid and solution, but for simplicity we will

use the original notation.) Then for each edge in the grid, the choice between
p- and h-refinement, the determination of the guaranteed edge rate, and the
selection of edges to refine are done exactly as in 1D, except that a weighted H1

seminorm is used instead of the more natural H1/2 seminorm which is difficult
to work with. In the case of bisected triangles, we only consider edges that
would be refined by the bisection of an existing triangle.

The h-refinement of edges determines the h-refinement of elements. It re-
mains to determine the degree of each element. As a starting point, element
degrees are assigned to satisfy the minimum rule for edge degrees, using the
edge degrees determined in the previous step. Then the biggest subelement
error refinement path is followed to determine the guaranteed element rate and
assignment of element degrees. We again refer to [10] for details. Finally, the
minimum rule for edge degrees is enforced by increasing edge degrees as neces-
sary.

A related, but simpler, approach was developed by Šoĺın et al. [28]. We
refer to this strategy as REFSOLN ELEM since it also begins by computing a
reference solution, uh/2,p+1, on Gh/2,p+1, but bases the refinement on elements.
The basic form of the hp-adaptive algorithm is different than that in Figure 1
for this strategy, also.

The local error estimate is given by the norm of the difference between the
reference solution and the current solution,

ηi = ||uh/2,p+1 − uh,p||H1(Ti)

and the elements with the largest error estimates are refined. If Ti is selected
for refinement, let p0 = b(pi + 1)/2c and consider the following options:

• p-refine Ti to degree pi + 1,
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• p-refine Ti to degree pi + 2,

• h-refine Ti and consider all combinations of degrees p0, p0 + 1 and p0 + 2
in the children.

In all cases the minimum rule is used to determine edge degrees. In [28], quadri-
section of triangles is used leading to 83 options to consider. With bisection of
triangles, there are only 11 options. Also, since the object of dividing by two
to get p0 is to make the increase in degrees of freedom from h-refinement com-
parable to that of p-refinement, we use p0 = b(pi + 1)/

√
2c since there are only

two children instead of four. Šoĺın et al. allow an unlimited number of hanging
nodes, so they have no issue of how to assign the degrees of children that were
created to maintain compatibility or one level of hanging nodes. For the newest
node bisection of triangles algorithm, we assign b(p + 1)/

√
2c to both children

of a triangle of degree p that is refined only for the sake of compatibility.
For each candidate, the standard H1 projection ΠH1(Ti)

candidate of uh/2,p+1 onto
the corresponding space is performed, and the projection error in the H1 norm,
ζcandidate, is computed,

ζcandidate = ||uh/2,p+1 −ΠH1(Ti)
candidateuh/2,p+1||H1(Ti)

as well as the projection error of the projection onto Ti, ζi.
The selection of which candidate to use is not simply the candidate with the

smallest projection error [27]. Let Ni be the number of degrees of freedom in the
space corresponding to Ti, and Ncandidate be the number of degrees of freedom
in the space corresponding to a candidate. For simplicity, when computing Ni

and Ncandidate we apply the minimum rule for edge degree ignoring the degrees
of the neighbors of Ti, e.g. Ni = (pi +1)(pi +2)/2 regardless of what the actual
edge degrees of Ti are.

Candidates with ζcandidate > ζi are discarded. We also discard any of the
h-refined candidates for which the degrees are both greater than pi since the
reference solution is (locally) in that space. Let n be the number of remain-
ing candidates. Compute the average and standard deviation of the base 10
logarithms of the ζ’s

ζ̄ =
1
n

∑
candidates

log ζcandidate

σ =

√
1
n

∑
candidates

(log ζcandidate)2 − ζ̄2

Finally, to determine which candidate to use, select an above-average candi-
date with the steepest error decrease, i.e., from among the candidates with
log ζcandidate < ζ̄ + σ and Ncandidate > Ni, select the candidate that maximizes

log ζi − log ζcandidate

Ncandidate −Ni

Following the refinement that is indicated by the selected candidate, the mini-
mum rule for edge degrees is applied.
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5 Numerical Results

In this section we demonstrate the performance of the hp-adaptive strategies
using two problems that are commonly used in the adaptive refinement liter-
ature. It is not the intention of this paper to compare the strategies against
each other. In this paper, we merely demonstrate the ability of the strategies to
achieve exponential convergence rates on a problem with a regular, but nearly
irregular, solution and a problem with a point singularity.

The computations were performed on an Intel Core 2 based PC operating
under the 32 bit CentOS 4 distribution of Linux with kernel 2.6.18-128.1.10.el5.
Programs were compiled with Intel Fortran Version 10.1 and gcc Version 4.1.2.

Results for REFSOLN EDGE were computed using Demkowicz’s code hp2d,
which was obtained from the CD in Demkowicz’s book [10]. For h-refinement
of triangles this code uses quadrisection with one level of hanging nodes. The
maximum degree for the polynomials is 7. Results for REFSOLN ELEM were
computed using Šoĺın’s code Hermes Version 0.99 [26]. For h-refinement of
triangles this code uses quadrisection with unlimited levels of hanging nodes.
The maximum degree for the polynomials is 9. Results for all other strategies
were computed using PHAML Version 1.6 [17]. This code uses newest node
bisection of triangles. The maximum h-refinement level was set to 53 and the
maximum degree was set to 21.

To observe the convergence rates, we apply the algorithm in Figure 1 with
a series of tolerances, τ = 0.1, 0.05, 0.025, 0.01, 0.005, . . . , 10−8. For each run we
record Ndof and ||ehp||E(Ω) for the final grid and solution. A least squares fit to
the exponential form

||ehp||E(Ω) = Ae−BNC
dof

is computed to determine the rate of convergence. According to Equation 5,
C is optimally 1/3. Slightly smaller values of C still indicate exponential con-
vergence, although not quite optimal, but very small values of C indicate that
exponential convergence was not obtained.

The first test problem is Poisson’s equation given in Equations 1-2 on the
unit square with the right hand sides f and g chosen so the solution is

u(x, y) = tan−1(α(
√

(x− xc)2 + (y − yc)2 − r0)).

The solution has a sharp circular wave front of radius r0 centered at (xc, yc)
as shown in Figure 2. α determines the sharpness of the wave front. For this
paper we use α = 200, (xc, yc) = (−.05,−.05) and r0 = 0.7. The center of the
circle is taken to be slightly outside the domain because the solution has a mild
singularity at the center of the circle and we want to see how the strategies
handle the wave front, not the singularity. For the regularity function for the
APRIORI strategy we return 3.0 if the element touches the circle on which
the wave front is centered, and a very large number otherwise. This causes h-
refinement with cubic elements along the wave front and p-refinement elsewhere.
The choice of cubics was arbitrary.
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Figure 2: The solution of the wave front problem. Colors represent the function
value, with blue the minimum value and red the maximum.

The convergence results are shown in Figures 3 and 4 where the norm of
the error is plotted against the number of degrees of freedom on a log-log scale.
The circles show the actual results for the sequence of values of τ , and the lines
are the exponential least squares fit to that data. The curvature of the lines is
indicative of the exponential rate of convergence. Higher curvature indicates a
larger exponent on Ndof , and a straight line would indicate a polynomial rate
of convergence.

Table 1 contains the exponents C from the exponential least squares fit. All
strategies exhibit exponential rates of convergence, as none of the exponents
are far from the theoretical 1/3. The differences from 1/3, both smaller and
larger, may be due to effects such as suboptimal performance of the strategy,
data points that are not in the asymptotic range of convergence, etc. Note that
if the early (coarse grid, low accuracy) data points are suboptimal, this causes
an increased curvature as the accuracy ”catches up” in the finer grids, which
can create exponents larger than 1/3.

The second test problem is Laplace’s equation, i.e. Equation 1 with the right
hand side f = 0, on the L-shaped domain of Figure 5. The reentrant corner
induces a singularity such that the exact solution, which is also shown in Figure
5, in polar coordinates is

u(r, θ) = r2/3 sin(2θ/3).

Dirichlet boundary conditions are set accordingly. The solution is known to be
in H1+2/3 in any neighborhood of the reentrant corner, so the regularity function
for APRIORI returns 1 + 2/3 if the element touches the reentrant corner and a
very large number otherwise. This results in h-refinement with linear elements
at the reentrant corner and p-refinement elsewhere.

The convergence results are shown in Figures 6 and 7, and the exponents
from the least squares fit are given in Table 2. Again, all strategies achieved
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Figure 3: Convergence plots for the wave front problem.
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Figure 4: Convergence plots for the wave front problem (continued).
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strategy exponent C
ALTERNATE 0.27
APRIORI 0.23
COEF DECAY 0.14
COEF ROOT 0.25
H&P ERREST 0.27
NEXT3P 0.23
NLP 0.30
PRIOR2P 0.16
REFSOLN EDGE 0.21
REFSOLN ELEM 0.44
SMOOTH PRED 0.40
TYPEPARAM 0.28
T3S 0.18

Table 1: Exponent on Ndof from the exponential least squares fit to the con-
vergence data for the wave front problem.

Figure 5: The solution of the L-domain problem.
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Figure 6: Convergence plots for the L-domain problem.
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Figure 7: Convergence plots for the L-domain problem (continued).

24



strategy exponent C
ALTERNATE 0.34
APRIORI 0.45
COEF DECAY 0.23
COEF ROOT 0.30
H&P ERREST 0.30
NEXT3P 0.22
NLP 0.61
PRIOR2P 0.32
REFSOLN EDGE 0.13
REFSOLN ELEM 0.20
SMOOTH PRED 0.41
TYPEPARAM 0.32
T3S 0.17

Table 2: Exponent on Ndof from the exponential least squares fit to the con-
vergence data for the L-domain problem.

exponential rates of convergence with a few of them achieving an exponent of
about 1/3 or more.

6 Conclusion and Future Work

Several hp-adaptive strategies have been presented in this paper. Although they
were presented in the context of Poisson’s equation in 2D, the strategies either
apply directly to other classes of PDEs or are easily modified for other classes.
Numerical results with two classic test problems demonstrate that all of the
strategies can achieve exponential rates of convergence, although the 1/3 in the
theoretical N1/3 is not always achieved.

The purpose of this paper is to summarize the proposed strategies in one
source and demonstrate that exponential rates of convergence can be achieved.
It would be of interest to know which, if any, of the strategies consistently
outperform the other strategies. Toward this end, future research involves a
numerical experiment using a large collection of 2D elliptic PDEs that exhibit
several types of difficulties, a uniform software base, and a consistent method-
ology.
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[30] E. Süli, P. Houston, and Ch. Schwab, hp-finite element methods for hyper-
bolic problems, The Mathematics of Finite Elements and Applications X.
MAFELAP (J.R. Whiteman, ed.), Elsevier, 2000, pp. 143–162.
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